
The CTK-Plugin Framework in CAS Applications -

A Tutorial

Introduction

Increasing complexity and security requirements are major issues in the implementation of modern,
clinically useful CAS applications. In order to address these problems, frameworks such as IGSTK [1],
MITK [2], CISST [3] etc. are used. They offer reusable methods and code skeletons, which simplify
development. Hence, complex re-implementation of standard methods, such as visualization [4],
registration/segmentation [5] and navigation [1], can be avoided. Plugin frameworks [6] [7] [8] and state
machine support [1] [6] also help to handle the level of complexity and increase the reliability.

The increasing scale of a framework may lead to a higher effort in initial training, even though only small
parts may be used. In particular, this effects the development of prototypes and tech demos, which are
time-sensitive due to their exploratory character. For this, lightweight frameworks with a short
familiarization period, like the Common Toolkit [7], are well-suited.

CTK is an open-source toolkit for the biomedical field that provides a service-based plugin framework [7].
The design of the CTK framework enables the creation of modular CAS applications. So far, there have
been only a few comprehensive tutorials of the CTK toolkit on the internet. Although CTK is used in the
MITK framework [2], there are no open-source sample applications. This makes efficient development
even more difficult.

In this tutorial, we take this problem into consideration and provide an introduction to the CTK plugin
framework, minimal working examples of its use, as well as an open-source demo application that can be
used as a template for standard navigation. In addition, the modules/plugins can be reused easily due to
service/event-based loose coupling.

CTK-Overview

This section provides a brief overview of the Common Toolkit, as well as an introduction to the plugin
framework and its use in the context of computer-assisted surgery. Thereby obtained knowledge builds
the basis of the demo application that is presented in Section 3.

The CTK framework consists of a comprehensive DICOM loader [9], a DICOM application hosting
system, a collection of Qt-Widgets, which are related to biomedical applications, a command line interface
and a plugin framework. The individual elements are based on C++ and Qt-Libraries [6]. In the following,
only the plugin framework is discussed since it allows a modular design of CAS applications and the
demo application is built upon. Other parts of the framework can still be used without restriction to extend
the demo application.

CTK plugins are modular units within an application that represent conventional-separated functions such
as communication to a tracker, the preparation of GUI elements or reading data. Plugins are compiled
separately and loaded by the plugin framework at runtime. Plugins are initialized by a plugin activator
class, for parallel execution, a GUI- or background-thread needs to be started. Each plugin contains a
pointer to the plugin context, which provides an access point to all loaded plugins and services. Thus, the
main program starts only the plugins and initializes a skeleton for the graphical user interface if required.

The communication between plugins is provided through services. Services are objects that are
registered by a plugin at the CTK service registry and are derived from the CTK service class. The CTK
service registry serves as a central point for plugins that either provide services or access services. A
service is uniquely defined by its interface (C++ class which usually contains only virtual methods) and its
properties (C++ hash map which contains names and states of properties as standard data-types).
Therefore, the interface must be included by the plugin that provides the service, as well as the plugins
that access the service. A plugin provides a service by registering itself to the CTK service registry. Other
plugins can hand over a tracker object (instance of a class that implements the abstract class
ctkServiceTracker) by specifying its interfaces and its properties. The tracker object will be notified after
the service of the CTK service registry is added, removed or the properties of the service are changed.
The notification takes place synchronously, which is why plugins that propagates a change to the service
object should not have locks. As an alternative, a plugin or the main program can access a service object
directly from the service registry but a manipulation of the object by multiple plugins should be avoided
due to memory safety. Figure 1a shows the service-based communication between plugins. Plugin A
provides a service object. Plugin B accesses a service tracker object that is notified after a change. Plugin
C and the main program access the service object directly.

Events are managed by CTKs own Eventadmin plugin, which provides the service ctkEventAdmin for
sending and receiving events. This service allows plugins (consisting of properties analog to services) to
publish events under a specific topic (of type QString). To receive events for a specific topic, plugins have
to implement the interface ctkEventHandler and register itself at the service registry. Events can be sent
synchronously or asynchronously. Figure 1b illustrates the relationship between the Eventadmin plugin
and other plugins. Plugin D sends an object under a particular topic, the Eventadmin plugin calls the
handleEvent method of plugin E (after it has been registered previously under the topic).

In the context of computer-assisted surgery, service-based communication is especially suitable for
exchanging data that cannot be described by standard C++ data types, because they are not supported
by events – for example the transfer of DICOM [9] data between plugins or from Qt GUI elements to the
main program. In contrast, asynchronous transmitted events are used for small, frequently updated data
such as tracker coordinates for real-time navigation.

The service/event-based nature of data exchange provides loose coupling between individual plugins,
and therefore a modular design of CAS applications as presented in Section 3. Once created plugins can
be reused easily for other programs. Each plugin acts as a standalone module whose status is defined by
defined access points (GUI inputs, service updates, and events). Consequently, plugins can include their
separate state-machine. Since CTK is based on Qt [6], it is appropriate to use Qts own state-machine
implementation. Nevertheless, plugins can include any library, so the use of other implementations, such
as IGSTK [1] is also possible.

Creating a new CTK Plugin

In this section we discuss in detail how to create and

manage a project and a plugin. In a first step to create a

project you need a top-level CMakeList

(src/CMakeList.txt) to be able to compile the project and

its plugins with CMake cross platform [11]. The possible

project layout is shown in the adjacent figure. The

project contains one application “CTK_Tutorial_bin” and

one plugin at.voxelmaster.emptyPlugin.

The top-level CMakeLists.txt file is in charge of finding

installed CTK and Qt4 libraries and manage the plugin

creation. CTK Plugin integration [12] requires CTK and

Qt4 libraries. To find CTK and Qt,4 you need to add

following CMake commands in our CmakeList.txt:

FIND_PACKAGE(CTK)and FIND_PACKAGE(Qt4)

To be able to take advantage of CTKs sophisticated

dependency checking system inside your own build

system, you need to write a small CMake macro called

GetMyTargetLibraries. It is used as a callback inside

CTKs own CMake macros and functions to distinguish

between targets being build in your project, and targets

external to your project (e.g. targets coming from CTK). It works by taking a list of target names and

filtering names that belong to your own project using regular expressions. Between _tmp_list and

OUTPUT_VARIABLE the use of regular expressions is not limited. Note that underscores (“_”) will be

replaced by points (“.”):

macro(GetMyTargetLibraries all_target_libraries varname)

set(re_ctkplugin "^at_voxelmaster_[a-zA-Z0-9_]+$")

set(_tmp_list)

list(APPEND _tmp_list ${all_target_libraries})

ctkMacroListFilter(_tmp_list re_ctkplugin OUTPUT_VARIABLE ${varname})

endmacro()

Possible example plugin names for this macro are:

at.voxelmaster.testname

at.voxelmaster.newPlugin

at.voxelmaster.pluginName

at.voxelmaster.asdfjkasdf

In a next step you should create a list containing one entry for each plugin in the plugins directory with the

CMake command SET. Each entry consists of the directory name containing the plugin followed by a

double point (“:”) and the default build option value (ON/OFF). This is the main macro to set up your CTK

plugins inside your own CMake project.

SET(plugins

plugins/at.voxelmaster.emptyPlugin:ON

)

ctkMacroSetupPlugins macro takes care of validating the current set of plugin build options, enables

and/or checks required plugins and handles all aspects of plugin dependencies. Additionally, it calls

add_subdirectory() on each given plugin.

ctkMacroSetupPlugins(${plugins}

)

To integrate our application “CTK_Tutorial” in CmakeList.txt, which needs to call methods from the CTK

Plugin Framework library, include the directories by “INCLUDE_DIRECTORIES” and link the application

to the CTKPluginFramework [13]. Therefore, you need following CMake commands:

PROJECT(CTK_Tutorial)

SET(CTK_Tutorial_SRCS

src/main.cxx

)

INCLUDE_DIRECTORIES(

${CTK_Tutorial_SOURCE_DIR}

${CTK_Tutorial_BINARY_DIR}

${CTK_Tutorial_SOURCE_DIR}/src

${CMAKE_CURRENT_SOURCE_DIR}

${CMAKE_CURRENT_BINARY_DIR}

)

SET(my_libs

CTKPluginFramework

)

ADD_EXECUTABLE(CTK_Tutorial ${CTK_Tutorial_SRCS})

TARGET_LINK_LIBRARIES(CTK_Tutorial {QT_LIBRARIES} ${CTK_LIBRARIES} ${my_libs}

)

Hint 1: Find the example under this link:

https://sourceforge.net/p/ctkcas/code/ci/master/tree/CTK_Tutorial/CMakeLists.txt

To create your own plugin in your application, you need to create a plugin-directory “plugins” in your main

project. In this directory you can place your plugin directories like for example

at.voxelmaster.emptyPlugin. The Plugin should contain at least following files: pluginName.cpp,

pluginName.h, CmakeList.txt, manifest_headers.cmake and target_libraries.cmake.

https://sourceforge.net/p/ctkcas/code/ci/master/tree/CTK_Tutorial/CMakeLists.txt

To generate this plugin files, you can use the CTKs plugin generator application CTKPluginGenerator

located in ../yourCTKBuildFolder/CTK-build/bin or copy the “emptyPlugin” plugin

(https://sourceforge.net/p/ctkcas/code/ci/master/tree/CTK_Tutorial/plugins/at.voxelmaster.emptyPlugin/)

External plugins (plugins without a main application which can be used in different projects) are build

exactly the same way as plugins within the CTK project itself. Hence the CmakeList of your plugin should

have following CMake commands to integrate your plugin to your application (this is simply an example

CMakeLists file):

PROJECT(at_voxelmaster_myNewPlugin)

SET(PLUGIN_export_directive "at_voxelmaster_myNewPlugin_EXPORT")

SET(PLUGIN_SRCS

emptyPlugin.cpp

)

SET(PLUGIN_MOC_SRCS

emptyPlugin.h

)

ctkFunctionGetTargetLibraries(PLUGIN_target_libraries)

ctkMacroBuildPlugin(

NAME ${PROJECT_NAME}

EXPORT_DIRECTIVE ${PLUGIN_export_directive}

SRCS ${PLUGIN_SRCS}

MOC_SRCS ${PLUGIN_MOC_SRCS}

UI_FORMS ${PLUGIN_UI_FORMS}

RESOURCES ${PLUGIN_resources}

TARGET_LIBRARIES ${PLUGIN_target_libraries}

)

Hint 2: Additional help for project and plugin creation can be found at:

http://www.commontk.org/index.php/Documentation/CTK_Plugin_Framework:_Setting_up_a_project

Hint 3: For some reason it is possible that you get an Segmentation fault or similar exceptions after you

have changed the CMakeLists.txt of a plugin and rebuild it. In this case, delete everything in the build

directory, make the directory with CMake and build the application again.

Hint 4: You can add additional libraries after TARGET_LIBRARIES ${PLUGIN_target_libraries}.

Additionally we have discovered strange behavior after linking to a shared library (“first library”) which

links itself to another shared library (“second library§). It can’t find the second shared library at runtime.

Therefore you have to use the “QLibrary” class:

QLibrary myLib("first library.so");

library.setLoadHints(QLibrary::ExportExternalSymbolsHint);

library.load();

https://sourceforge.net/p/ctkcas/code/ci/master/tree/CTK_Tutorial/plugins/at.voxelmaster.emptyPlugin/
http://www.commontk.org/index.php/Documentation/CTK_Plugin_Framework:_Setting_up_a_project

typedef void (*MyPrototype)();

MyPrototype myFunction = (MyPrototype) myLib.resolve("mysymbol");

if (myFunction)

 myFunction();

In the last step you need to find and start your created plugin in your main application.

Before you can load a plugin, you need to add the plugin directory path to the

ctkPluginFrameworkLauncher

ctkPluginFrameworkLauncher::addSearchPath("plugins",true);

Afterwards you can start the plugin with with

ctkPluginFrameworkLauncher::start(“name of plugin”);

Plugin Communication

According to general inter-plugin communication mechanism, plugins can communicate with each other

[14]. The communication conforms to the popular publish/subscribe paradigm and can be performed in a

synchronous or asynchronous manner. The communication between plugins can be done in two modes:

event-based or service-based.

The main components in a publish/subscribe communication are:

Event Sender: Sends events or messages related to a specific topic.

Event Receiver (or Handler): Expresses interest in one or more topics and receives all the messages

belonging to such topics.

Event-based Communication
By event based communication [14], events are composed of two attributes:
A topic defining the nature of the event and a set of properties describing the event.

In the following, you can find an event with properties created and send using eventAdmin to the

receiver.

// sendEventToReceiver located in

//plugins/at.voxelmaster.eventBasedCommunicationSenderPlugin/eventBasedCommunicationSe

nderPlugin.cpp
ctkServiceReference reference= context-

>getServiceReference<ctkEventAdmin>();

ctkEventAdmin* eventAdmin= context-

>getService<ctkEventAdmin>(reference);

 ctkDictionary properties;

 properties["sendText"]= sendText;

 properties[sendText];

 ctkEvent reportGeneratedEvent("SendEventUpdated", properties);

 eventAdmin->sendEvent(reportGeneratedEvent); //for synchronous sending

eventAdmin->postEvent(reportGeneratedEvent); //for asynchronous sending

To receive event notifications, the receiver creates an event handler (an event handler is a class

implementing the ctkEventHandler interface which is registered as a service object) and register it

as a service at the ctk service registry. EVENT_TOPIC property describes the list of topics in

which the event handler is interested.

//receiveEventFromSender located in

//plugins/at.voxelmaster.eventBasedCommunicationReceiverPlugin/eventBasedCommunicationR

eceiverPlugin.cpp

ctkDictionary props;

props[ctkEventConstants::EVENT_TOPIC] = "SendEventUpdated";

context->registerService<ctkEventHandler>(instance, props);

receiverText= event.getProperty("sendText").toString();

Hint 5: Before you start the sender plugin, you should start the receiver plugin in both

communication modes (event- or service-based) of plugins . Otherwise, the receiver plugin can’t

receive the events that the sender sent (before the receiver was active).

Hint 6: Find additional information for event-based communication at

http://www.commontk.org/docs/html/PluginFramework_EventAdmin_Page.html

Service-based Communication

To create service-based communication, the sender needs to initialize an interface and register

itself to the service with its properties.

//sendServiceToReceiver located in

//plugins/at.voxelmaster.serviceBasedCommunicationSenderPlugin/serviceBasedCommunication

SenderPlugin.cpp

ctkDictionary properties;

interfaceInstance = new serviceInterface();

interfaceInstance->sendText= "Send Service Text ";

serviceRegistrationReference = context-

>registerService<serviceInterface>(interfaceInstance, properties);

http://www.commontk.org/docs/html/PluginFramework_EventAdmin_Page.html

properties["serviceEventID"]=0;

serviceRegistrationReference.setProperties(properties);

To set the service tracker as listener to all “serviceInterace” service, it can be initialized in this

way:

//initializeServiceTracker located sendServiceToReceiver.cxx
serviceTracker* sTracker = new serviceTracker(context,this);

ctkServiceTracker<serviceInterface*,serviceInterface*>* tracker = new

ctkServiceTracker<serviceInterface*,serviceInterface*>(context,sTracker

);

tracker->open();

The service tracker class is an instance of a class that implements the abstract class
ctkServiceTracker by specifying its interfaces and its properties. The tracker object
serviceBasedCommunicationReceiverPluginObject can be accessed by the service tracker. To
receives notification, after the service is added, removed or modified at the CTK service registry.

//serviceTracker located in

//plugins/at.voxelmaster.serviceBasedCommunicationReceiverPlugin/serviceTracker.h

serviceInterface* addingService (const ctkServiceReference &reference)

{

 modifiedService(reference,context-

>getService<serviceInterface>(reference));

 return context->getService<serviceInterface>(reference);

 }

void modifiedService (const ctkServiceReference &reference,

serviceInterface* service)

{

serviceBasedCommunicationReceiverPluginObject-

>receiveServiceFromSender(service->sendText);

qDebug()<< "Receive Service From Sender \n"<< sendText;

}

Hint 7: Usually, the “modifiedService” method is used for communication. To trigger a

modification, just call the “setProperty” method from the service registration reference.

serviceRegistrationReference = context-

>registerService<serviceInterface>(interfaceInstance, properties);

serviceRegistrationReference.setProperties(properties);

//serviceInterface located in

//plugins/at.voxelmaster.serviceBasedCommunicationSenderPlugin/serviceInterface.h

//and

//plugins/at.voxelmaster.serviceBasedCommunicationReceiverPlugin/serviceInterface.h
class serviceInterface : public QObject

{

Q_OBJECT

public:

QString sendText;

};

CAS Demo Application

A demo application has been developed to validate the application of CTK in computer-assisted surgery,
as well as to facilitate the familiarization with the framework. It provides plugins for loading DICOM [9]
images, integration of tracking data, marker-based registration of CT data, navigation and the
visualization of (stereo-) video streams.

The structure of the application can be divided into three subgroups:

Main program: The main program handles the loading of plugins and provides a basic Qt GUI skeleton
(Figure 2a). The GUI is loaded dynamically from service objects that were registered by visualization
plugins. The right frame contains the visualization of the currently selected plugin, the left one the controls
for all plugins. By clicking on the plugin title an active plugin can be selected.

Visualization-Plugins: Visualization plugins provide GUI elements to the main program by services.
These consist of a visualization element (VE, Figure 2a, red), which handles the actual graphical
representation, and a control element (KE, Figure 2a, blue). For the demo applications three visualization
plugins were created:

Dicom Loader: The KE is used for loading CT DICOM data [9]. In the VE, data is presented in a
coronal sagittal, axial and a combined. Therefore, the IGSTK DicomReader [1] was used, the GUI
elements were created with the QT Designer [6]. A pointer on the DICOM data is stored in a
service object, which notifies the navigation plugin after a modification.

Navigation: The navigation plugin implements the marker-based registration of DICOM [9] data,
its visualization and navigation. The visualization is performed analogously to the DICOM Loader
plugin (Figure2a). The tracking data is received via asynchronous events from the tracker-
communications plugin. Due to loose coupling, it is possible to replace the tracker-communication
plugin at will.

Stereo-Microscope-Visualization: Intended as a tech demo, the microscope plugin serves no
benefit for the navigation. The KE contains no control elements, the VE shows two video streams
of a stereo-camera setups. The stream is received as a GUI element by a service of the
microscope communication plugin. In order to enable stereo-microscope navigation, it is possible
to receive events from the tracker communications plugin, and reuse the navigation GUI
elements. For simplicity, this feature has not been implemented.

Communication-Plugins: Communication plugins provide information for visualization plugins by
services and events. They serve as an interface to the hardware. These plugins can be replaced any time
(e.g. to communicate with other trackers) as long as they implement the same service interface or send
the same events.

Tracker-Communication: The Tracker-communication plugin establishes a connection to a
specific tracker. In the demo application, IGSTK [1] marker coordinates, from an Optotrak Certus
Tracker (NDI, Germany), are read sent by events (via the Eventadmin plugin) to the Navigation
plugin. To integrate other trackers (e.g. by IGSTK [1] or OpenIGTLink [10]), it is sufficient to
create a new Tracker-Communication plugin and send events to the Eventadmin plugin.

Microscope-Communication: This plugin implements the connection to a stereo-camera setup,
which represents the cameras of a stereo-microscope. The video-stream is provided as Qt GUI
element by a service to the Stereo-Microscope-Visualization plugin. This plugin provides all
parameters of the microscope (zoom, focus, position, etc.).

Figure 2b shows the communication between the main program, Visualization plugins, Communication
plugins and the Eventadmin plugin, as well as their services. The main program starts all plugins. This
can be done in any order, because each plugin has its own state machine. As long as required services
haven’t been initialized, each plugin waits in a "wait" status. The main program loads the GUI elements in
the GUI skeleton after starting the visualization plugins. Then, DICOM data can be loaded by the DICOM
loader, which will notify the service object tracker of the Navigation plugin. If the Navigation plugin
receives tracker coordinate events (i.e. if the tracker communication has been started successfully),
registration and subsequent navigation can be initialized. Independent from these processes, the Stereo-
Microscope-Visualization plugin renders a video stream as a GUI element, once the microscope-
communication has been loaded.

Discussion

Compared to comprehensive toolkits in the CAS area, the Common Toolkit provides a short
familiarization period. For example, the use of MITK [2], although it is based on CTK, is associated with
high effort for its extensive range of functions. In contrast, the CTK plugin framework enables effective
development of prototypes and demos. Plugins may be easily replaced or reused by service-based
communication. Any additionally required functions (e.g. segmentation/registration, state machines) can
be integrated by using well-known libraries such as ITK [5] or QT [6].

The introduced demo application represents a simple example of standard navigation using the Common
Toolkit. The implementation demonstrates, that CTK can be used in the field of CAS. Due to the public
source code, the demo offers a help for the development with the CTK plugin framework.

Summary

In this article, we take increasing complexity and security requirements of CAS applications into
consideration and provide an introduction to the CTK plugin framework.

This allows the creation of modular applications and the integration of external libraries to extend the
functionality. Therefore, the usage of extensive frameworks can be avoided. In Section 2, the creation of
plugins has been described, as well as their communication by services between plugins.
A demo application, which is described in Section 3, has been developed to validate the application of
CTK in computer-assisted surgery, as well as to facilitate the familiarization with the framework.

Additional Information

The source code of the demo application, minimal examples of plugins and a tutorial are freely available
on https://sourceforge.net/projects/ctkcas/ and http://www.wopsys.com

If you use this tutorial or application for your work, please cite our paper:

"The Common Toolkit CTK in computer-assisted surgery - A demo application", F. Ganglberger, Y.

Özbek, W. Freysinger, CURAC 12th Annual Conference, 2013

http://www.voxelmaster.at/
http://www.voxelmaster.at/
http://www.wopsys.com/

References

[1] Cleary K, Cheng P, IGSTK: The Book, Insight (2007)

[2] Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M,

Maier-Hein L, Maier-Hein KH, Meinzer HP and Wolf I, The Medical Imaging Interaction Toolkit: challenges

and advances, International Journal of Computer Assisted Radiology and Surgery (2013)

[3] Deguet A, Kumar R, Taylor R, Kazanzides P, The CISST libraries for computer assisted intervention

systems,Insight 1-8 (2008)

[4] Schroeder WJ, Martin K, Lorensen WE, The Visualization Toolkit: An Object-Oriented Approach to 3D

Graphics, Third edition, ISBN 1-930934-07-6, Kitware, Inc. (formerly Prentice-Hall) (2003)

[5] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,

http://www.itk.org/ItkSoftwareGuide.pdf (2003)

[6] Dalheimer M, Programming with QT, Second edition, ISBN 978-0-596-00064-6, O'Reilly Media (2002)

[7] http://www.commontk.org

[8] Pieper S, Halle M, Kikinis R, 3D SLICER. Proceedings of the 1st IEEE International Symposium on

Biomedical Imaging: From Nano to Macro 632-635 (2004)

[9] Bidgood WD, Horii, SC Introduction to the ACR-NEMA DICOM standard. RadioGraphics 12, 345-355

(1992)

[10] Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, et al., OpenIGTLink: an

open network protocol for image-guided therapy environment. The international journal of medical

robotics computer assisted surgery MRCAS 5, 423-434 (2009)

[11] CMake 2.8.4 Documentation, http://www.cmake.org/cmake/help/v2.8.4/cmake.html

[12] Documentation/CTK Plugin Framework: Setting up a project,

http://www.commontk.org/index.php/Documentation/CTK_Plugin_Framework:_Setting_up_a_project, 18

November 2011

[13] Documentation/CTK Plugin Framework: Introduction,

http://www.commontk.org/index.php/Documentation/CTK_Plugin_Framework:_Introduction, 31 January

2011

[14] CTK Event Admin Service,

http://www.commontk.org/docs/html/PluginFramework_EventAdmin_Page.html

